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The necessity for developing a boundary-layer theory in the case of blast waves 
stems from the fact that inviscid flow solutions often yield physically unrealistic 
results. For example, in the classical problem of the so-called non-zero counter- 
pressure explosion, one obtains infinite temperature and zero density in the centre 
at  all times even after the shock front deteriorates into a sound wave. In reality, 
t'liis does not occur, as a consequence, primarily, of heat transfer that modifies 
the structure of the flow field around the centre without drastically affecting the 
outer region. It is profitable, therefore, to consider the blast wave as a flow field 
consisting of two regions : the outer, which retains the properties of the inviscid 
solution, and the inner, which is governed by flow equations including terms 
expressing the effects of heat transfer and, concomitantly, viscosity. The latter 
region thus plays the role of a boundary layer. Reported here is an analytical 
method developed for the study of such layers, based on the matched asymptotic 
expansion technique combined with patched solutions. 

1. Introduction 
Recent experimental Rtudies of explosions revealed the importance of more 

realistic knowledge of the structure of blast waves than that hitherto available. 
This became of particular interest for the study of non-steady flow fields generated 
by exothermic chemical reactions, and especially by focused laser beams (Lee, 
Soloukhin & Oppenheim 1969; Bach, Knystautas & Lee 1969; Oppenheim & 
Soloukhin 1973), a technique nowadays in vogue as a consequence of the exciting 
possibility of attaining by such means appropriate conditions for controlled 
fusion (Brueckner 1973). 

In the literature, such a flow field became known as the non-zero counter- 
pressure blast wave. Its inviscid properties are available, having been determined 
either by straightforward numerical computations of the Lagrangian equations of 
motion using the von Neumann-Richtmeyer artificial viscosity technique (e.g. 
Brode 1955), or by semi-analytical methods, such as that of Belotserkovskii's 
integral relations, used by Korobeinikov & Chushkin (1966). All these solutions 
have the drawback of the physically unrealistic feature of infinite temperature 
and zero density at the centre for all times, even after the shock front has decayed 
into a sound wave. At the same time, one observes in laboratory experiments 

7 Present address: Jet Propulsion Laboratory, Pasadena, California. 
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interesting phenomena occurring inside blast waves, such as spherical flame 
kernels generating shock fronts (Kame1 & Oppenheim 1971) and developing 
triple-wave intersections (Lee et al. 1969). The principal question that arises then 
is whether the region of the flow field where these phenomena take place can be 
still treated as inviscid, and, in particular, whether the results of such elaborate 
studies as those of Korobeinikov & Chushkin (1966) could be used for their 
interpretation. 

More specifically, of particular significance in this respect is, in essence, the 
question of what is the thickness, or radius, of the region where dissipative 
effects have a controlling influence. This is equivalent to the task of determining a 
boundary-layer thickness. The basic reason for the existence of a boundary layer is 
the requirement that appropriate flow boundary conditions be satisfied: namely, 
zero velocity a t  the wall due to the action of viscosity. I n  the case of blast waves, 
one has a similar requirement associated with the condition of zero temperature 
gradient a t  the centre, which is achieved as a consequence of heat-transfer effects. 

In  principle one could obtain, for a given case, a numerical solution of the set of 
blast-wave equations, including the terms expressing the effects of transport 
properties. However, this would be economically prohibitive, even with the use of 
modern computational techniques, as well as pointless, since, as the problem has 
been formulated above, it is more profitable to know the limits of available 
inviscid solutions than to seek a new solution for each particular case. 

Thus the existence of a boundary layer is here postulated, i.e. a region around 
the centre whose structure is governed by transport processes, bounded by a 
virtually inviscid flow field. In  order to determine salient features of this layer, 
in particular its effective radius, an analytical procedure has been developed, 
basecl on the matched asymptotic expansian technique combined with patched 
solutions for the two regions of flow. Treated in this manner are the cases of point, 
line and plane symmetrical flows of perfect gases with constant specific heats and 
constant Prandtl number corresponding to relatively high Reynolds numbers, 
while viscosity is assumed to  be proportional to a given power of the absolute 
temperature, and the heat-transfer coefficient is expressed in terms of the Rosse- 
land approximation expressing the effects of both conduction and radiation, 

Our concern about the effects of transport processes on blast waves is, of 
course, by no means unique. Sedov (1959) included in his text a thorough analysis 
of the conditions leading to self-similarity for blast waves, for which the effects 
of heat conduction are included. Korobeinikov (1 957) obtained an approximate 
solution to this problem for spherical explosions, by the use of a co-ordinate 
expansion of the self-similar equations of motion around the centre of symmetry. 
However, he was concerned with blast waves whose structure is affected by 
transport processes throughout their extent, as is the case when the Reynolds 
number is relatively low; and his analysis is, therefore, not related to the concept 
of a boundary layer. More recently, Sychev (1965) and Bowen & Feay (1970) ob- 
tained uniformly valid solutions, by means of the matched asymptotic expansion 
technique, for self-similar blast waves consisting of an outer inviscid region and 
an inner viscous and heat-conducting region. Sychev’s solution also assumes that 
the viscosity and thermal conductivity are linearly proportional to temperature, 
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while that of Bowen & Feay is limited to cylindrical blast waves and constant 
transport properties. Sychev’s solution is for small times (of the order of the 
molecular relaxation time), and demonstrates the manner in which the infinitely- 
high temperatures at  the centre develop. On the other hand, our interest is in 
times after these high temperatures have developed, and in the manner in which 
diffusive effects cause their decay. 

In our case, the problem is that of non-self-similar blast waves whose behaviour 
is governed by two matched sets of partial differential equations expressing the 
principles of conservation of mass, momentum and energy for the inner and outer 
regions, respectively. The behaviour of the outer region is described in terms of 
exponential fits to known solutions of inviscid blast waves. The equations 
governing the flow in the inner region are first simplified by the application of the 
principle of least degeneracy, then the solutions are expressed in the form of 
co-ordinate expansions. The task of analysing the inner region is thus reduced to 
the problem of solving a system of first-order ordinary differential equations, 
subject to proper matching conditions with the outer flow, and the boundary 
condition of zero flow velocity and zero temperature gradient at  the centre. 

2. Description of the physical model 
As already indicated, the flow field, other than in the region close to the origin, 

is that of an inviscid non-zero counter-pressure blast wave. The initial conditions 
are given by the solution for the self-similar zero counter-pressure wave, that is, 
one bounded by a shock of infinite Mach number. Since the temperature at  the 
centre is, therefore, initially infinite and can be expected to remain extremely 
high for long times (Sychev 1965; Bowen & Feay 1970), thermal conduction 
cannot be the sole heat-transfer mechanism, and, a t  least for an initial period of 
time, thermal radiation must be taken into account. In  fact, as will be shown 
later, for most typical cases of interest, if one considers heat conduction only, the 
resulting temperatures near the centre are too high for this to be the sole heat 
transport mechanism. 

A determination of the relative importance of conductive and radiative energy 
t,ransport is in general difficult for arbitrary values of the photon mean free path. 
The situation is considerably simplified if the photon mean free paths are either 
much larger than the characteristic dimensions of the blast wave or much 
shorter, so that the Planck or Rosseland mean absorption coefficient approxima- 
tions, respectively, are valid. The former of these cases is the optically-thin or 
transparent case, while the latter is the optically-thick or opaque case. 

The relative importance of the two transfer mechanisms is most easily seen by 
forming the ratio of heat transfer by thermal conduction to heat transfer by 
radiation. For the diffusion or Rosseland approximation this ratio is given by 
(Thomas & Penner 1964) 

while for the transparent case the ratio is 

a, = 3 i q  1 6 a ~ 3 i ~ ,  I& 

5-2 
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in terms of the thermal conductivity k, Stefan-Boltzman constant (T, absolute 
temperature T ,  Rosseland mean free path iL, no, characteristic length L, typical 
temperature gradient V T ,  and Planck mean absorption coefficient L ,  The 
Rosseland approximation applies when iL, Ro < L ;  while for iL, = Zi,lpl) 9 L 
the transparent gas approximation is valid. However, since these parameters take 
no account of the motion of the fluid, only the first of these ratios is applicable to 
flow problems with radiant energy transport. Moreover, in the Rosseland limit 
the radiative and conductive heat-transfer coefficients are additive, while in the 
transparent limit, the more meaningful ratio is that of radiative energy loss from 
the system per unit surface area to a characteristic rate of enthalpy transport per 
unit area (Goulard 1964; Thomas & Penner 1964). 

The most comprehensive tabulation of k, iL, h'o, EL, p1 and the ratios a1 and a2 
as functions of a broad range of densities and (high) temperatures is that of 
Thomas & Penner (1964). The workof Sychev (1965), Bowen & Feay (1970) and 
Brode (1968) for the case of nuclear blasts, and our solutions (anticipating the 
results) indicate that the temperatures and densities near the centre, for the cases 
of most interest, lie in a range of values for which, as indicated by Thomas & 
Penner (1964), we can conclude that iL,Ro is much less than the characteristic 
length of the explosion, f- and that a1 < 1. That is, the Rosseland approximat,ion 
is valid in the very hot inner region. (In the outer region, the temperature is of the 
order of thousands of degrees and the air is transparent. The effects of either 
conduction or radiation are there relatively insignificant, and can be treated in 
the classical inviscid manner.) I t is  well known (Vincenti & Kruger 1965; Penner & 
Olfe 1968) that, in the Rosseland limit for an optically thick gas, the heat transfer 
by radiative transfer is proportional to the temperature gradient, so that t,he 
total heat conduction vector q can be written as the sum 

q = - ( k + k , ) V T .  

li: is the usual molecular thermal conduction coefficient; and E ,  is a radiation 
conductivity given by 

k, = 4$t2aT3iL, 

(This result has already been used in forming the ratio u1 above.) 
Anticipating the importance of radiation, we shall represent the total effective 

conductivity x ( = k -I- kR), which in general is a function of both density and 
temperature, in such a manner that, by appropriate choice of certain parameters, 
the case of thermal conduction without radiation and that of radiation without 
conduction can be separately considered. In  most cases, when radiation is con- 
sidered, conduction is in fact negligible. 

3. Conservation equations 
The unsteady, one-dimensional flow field of a blast wave is described in terms 

of two independent variables, the time t and the space co-ordinate r ,  while the 

Such a characteristic length is defined later (equation (105)). 
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conservation equations of mass, momentum and energy, describing the Aow, can 
be expressed most conveniently in the divergence form (Oppenheim et al. 1971) 

and 

where 

a a 
at 
- (pr j )  +ar (uprj) = 0, 

a (upvj) + Z [ (u2 +:) p.] = prj (5 + R~), 

- [ ( e + f ) p r j ]  a + i [ ( e + f + ~ ) u p r j ]  =pr ja2 , ,  

at 2 P  

dr  

0 for plane symmetry, 

2 for point symmetry, 

1 for line symmetry, (4) 

for density p, pressure p ,  flow velocity u, internal energy e, body or dissipative 
force acting on a unit mass Ql, and rate of energy deposited per unit mass of 
substance or the energy dissipation terms R2. 

For the case considered here, where only viscosity and heat-transfer effects are 
taken into account, SZ, and SZ2 can be written in the form 

T is the local temperature; and p and x are, respectively, the coefficients of 
viscosity and heat transfer. According to the arguments presented in $2, the 
latter can be expressed in terms of the Rosseland approximation as 

CI and &are constants, while a subscript zero refers to a reference state. Equation (8) 
represents the total effective heat-transfer coefficient, which by appropriate 
choice of a and S allows us to take into account at  the same time the effects of 
thermal conductivity and radiation. 

The medium is assumed to behave essentially as a perfect gas with constant 
specific heats; and the conservation equations are expressed in non-dimensional 
form by the introduction of geometric blast-wave co-ordinates 

IL' ZE r/r ,  and = rn/rO, 
and fluid flow parameters 
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r, is the front radius, ro its reference value, W, its velocity and A1 its Mach number; 
a is the local speed of sound, cy the specific heat a t  constant pressure; and a sub- 
script a refers to  the state of the ambient atmosphere, into which the blast wave 
propagat’es. 

As a consequence of the perfect gas assumption, 

In  terms of these non-dimensional quantities, (1)-(3), with (6) and (6), become 

alnh =-&-)-+-(-+j) f alnh f alnf = o ,  
X: a l n z  x alnx 

y is the specific heat ratio. 
1, (1  1)-(13) are solved by introducing the concept of a 

boundary-layer-like region, i.e. a region around the centre where the influence of 
transport processes is predominant, while outside this region such effects are 
negligible. The extent of the inner region is defined in terms of its radius +, the 
principal unknown of our problem. 

As indicated in 

4. Scaling 
The flow field in the inner region, containing the dissipative effects, is described 

by a set of second-order nonlinear partial differential equations, which are not 
amenable to straightforward solution. I n  order to simplify these equations, an 
order-of-magnitude analysis is t’herefore required. 

For this purpose, the equations are scaled by introducing the sinall parameter 

E = $(RP)-l. (16) 

xi = Z / V ( E ) ,  fi E f / $ ( E ) ,  h ,  = I&//?(€).  (17)-(19) 

In  terms of this parameter, the inner variables are scaled as 

v ,  Q and p are, a t  this stage, arbitrary functions of E .  We do not rescale 9 ( i t .  the 
pressure) in the inner region. The reason for this is that  the pressure of the 



Boundary-layer theory for blast waves 71 

inviscid outer flow field is practically uniform around the centre; hence it is 
assumed to be simply impressed, without any distortion, upon the inner region. 

The second independent variable, 5, is also not scaled since, as a measure of the 
shock front position, it describes the extent of the whole flow field a t  a given 
instant of time, and is therefore universally applicable to  both the inner and 
outer regions. 

The conservation equations for the inner region (1 I)-( 13) become 

Requiring that all the terms in the continuity equation be of the same order 
leads to 

(23) 44 = $(El. 

piow, applying the principle of least degeneracy (Van Dyke 1964), one finds 
that the heat-transfer term in the energy equation (22) should be of the same 
order of magnitude as t'he inviscid terms. This requires that 

pa+'-"€) V 2 ( E )  = E .  (24) 

This provides us with two relations for v, $ and P in terms of E. The third is 
obtained from the asymptotic inviscid solution a t  the centre, i.e. the inner limit 
of the outer solution. For instance, in the classical case of the constant energy, 
non-zero counter-pressure blast wave, it is known (see e.g. Korobeinikov & 
Chushkin 1966) that h can be expressed in the form 

( 2 5 )  h N &+lMy-l). 

Then the zeroth-order inner solution, i.e. the part independent of E, should be 
expressed asymptotically, for proper matching, as 

hi p - l ( v x i ) ( j + l ) / ( y - l ) .  (26) 

t In fact, we need not assume this to be the case. The validity of this assumption would 
follow aiitoinatically from the scaling (Sychev 1965; Bowen & Feay 1970). 
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From the condition that hi be independent of E ,  i t  follows that 

This expression, combined with (23) and (24), yields finally 

aad 

(28) 

(29) 

The function v (E) ,  given by (28), determines the size of the inner region. Table 1 
gives a list, for various values of j, u and 6 ( y  = 1.4), of the exponent 0 of E in the 
expression for v(a). (As will be discussed in f 11,  S = 0 corresponds to the thermal 
conduction case, and S = - 2 to the radiation case. The significance of the parti- 
cular choices of a will also appear later.) We take particular note of the generally 
small values of the exponent. 

For c < 1, we note that the above relations lead to the inequalities or estimates 

v$/3 < 1 and e/p" < 1, (301, (31) 

to  be used in obtaining the equations for the inner region. 

5. Governing equations 

(22), can be reduced as shown below. By virtue of the definition in (9), 
Using the results of $4,  the conservation equations for the inner region, (20)- 

a 
-- = A-;  a 
iilnE alny 

and, in accordance with (23), the continuity equation (20) becomes 

A--(l--)-+-(-+j) a lnh f alnh f alnf = o .  
alny 5 a l n z  z a lnz  (33) 

As a consequence of the first reduction rule (30), the momentum equat,ion (31) is 
reduced to the condition 

= 0, SO that g = g(y), (34) 
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which means that the pressure of the inviscid outer flow region, a plateau around 
the centre, is impressed uniformly upon the inner boundary layer throughout its 
extent. As the result of the second reduction rule (31)) all the viscous terms in the 
energy equation vanish, and (22) becomes 

(Since viscous effects are in fact negligible in the inner region, the Reynolds 
number is not a very meaningful quantity, and the small parameter E = $(RP)-l 
is simply the ratio of heat transfer by conduction or radiation to convective 
transfer. ) 

6. Boundary and matching conditions 
Boundary conditions for the inner region are (i) symmetry conditions at the 

centre, to be satisfied a t  all times (i.e. for 6 > 0) )  namely, (a) zero particle velocity 

f = O  at x = O ,  (36) 

(b) zero temperature gradient, which, as a consequence of the perfect gas assump- 
tion and (31), stipulates 

ah/ax = 0 a t  x = 0; (37)  

fime, = fouter a t  some x = 2,  (38) 

hinner = houter a t  some x = 2. (39) 

(ii) matching conditions between the inner and outer regions 

Here the derivatives are not matched, so that profiles of gasdynamic parameters 
for the two regions intersect each other a t  finite angles a t  the matching point. 
One of the virtues of this procedure, apart from its simplicity, is that it leads to a 
sharp criterion for the evaluation of 2. 

For the special case of a constant-energy blast wave with non-zero counter- 
pressure, the asymptotic inner limits of the outer inviscid flow field have the form 
(Korobeinikov & Chushkin 1966) 

fouter = F(Y) 5 5  houter = H(Y) 2'. (4% (41) 

Here, as a consequence of the conservation equations (1 1)-( 13) (with w1 = w2 = 0) 
and the transformation (32), 

with 
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The constant El, which appears in expression (43) for H ( y ) ,  is given, for j  = 2 ,  by 

and for j = 0, by 
(2y - 1)(5~-4)/[3(~-1) (2-y)l (y + 1)(4+~-3~')/[3(~--1) (2-y)I 

Ic, = %2/[3(?-1)1 1/(?-1) (47) 
Y (7-1) 

The functions A(y) and g(y), as well as [(y), are given in numerical form by the 
inviscid flow solutions. For present purposes, they are approximated by the 
algebraic expressions 

h ( y )  = h, + hi y h2y2 f h3y3 h4?J4, (48) 

(49) dY) = go + s l y  + S,Y2 +S3Y3 + S4Y4, 

w = [ ~ l ~ e x p ( ~ 2 ~ e x p ( ~ 3 ~ + ~ 4 ~ 2  + ~ ~ 9 3 + t ~ ~ y 4 + 5 ~ ~ 5  + [ 8 ~ 0 + ~ 9 ~ 7 ) } 1 1 ' ( j + ~ ) .  (50)  

Here (Bach & Lee 1970) 

j + 3  
f l = ( ~ )  y ,  - -" and h,=j+1.  -ho 

7. Initial conditions 
Initial conditions are provided by the solution of the self-similar case, for which 

y = 0. Special attention must be paid to the factor ~ f - ~ l g ,  uhich appears on the 
right-hand side of (35). From (50) it follows that, for small y, 

y - z  
- -  - ([il)(j+l)-l~~-a-(~+l)-l (9  < 1). (53) 

f 
In order that the governing equations be independent of y, so that the flow, in 
a continuous manner, approaches the self-similar case with respect to I): in the 
limit y -+ 0, the exponent of y in (53) must vanish. Hence, for 5 > 0, 

a = a, = $(j- l)/(j+ 1). (54) 

If a > a,, the right-hand side of (35) becomes infinite. This means that, under 
such circumstances, the whole flow field is so strongly influenced by heat transfer 
that the temperature gradient, and hence the density gradient, everywhere must 
be vanishingly small. In this case, the density at the centre is of the order of 1. 
On the other hand, if a < a,, the left-hand side of (35) acquires a dominant role, 
so that the whole flow field is, in effect, inviscid, and the temperature a t  the centre 
is infinite while the density is zero. Neither of these extreme eases provides proper 
initial conditions for a heat-conducting boundary layer. Thus, for a + as, another 
procedure is required. 
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8. Co-ordinate transformation 
To remedy the situation described at  the end of 3 7 (i.e. to determine proper initial 

conditions for the case when a =+ as), following Sychev (1965) we substitute for 
the geometric space co-ordinate x a new variable 

9 = xym. (55 )  

The transformation relations are then 

(56) 

I n  order to  have matching conditions specified in terms of 7 and y, the inviscid 
solut,ions for the outer region are expressed as 

fouie, = P(y) x = P(Y) 7/ym, houter = H ( y )  xS = H ( y )  v ~ / Y ~ ~ *  (58)9 (59) 

(601, (61) 

F (y )9  = f ( r , y )  atsome 9 = i j ,  (62) 

H(y)vs = h(7,y) a t  some 9 = i j .  (63) 

Concomitantly, the corresponding solutions for the inner region must be of the 
form 

The matching conditions thus become 

finner = f (9 ,  y)/ym, hinner = h(7 ,  !/)/yrns* 

Equations (33)-(35) become 

h,n--+h--(~--)-+-(-+j) alnh alnh f alnh f alnf = 0, 
alnq alny x a l n r  x alnq 

(65) 

alng alng 
-h+hm--++h-- 

a h 7  alny 

I n  the above, 

and is finite for all y. The parameters f and h are functions of 7 and y, as specified 
by (62) and (63).  For the right-hand side of (66) to be finit'e, the exponent of y 
must be zero. Thus 

m = (01 - .,)/(s + as + 2 - 6s). (68) 
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9. Reduction to ordinary differential equations 

dependent variables are introduced. We write 
To simplify the solution of the problem, co-ordinate expansions for the 

f(7,  !/) = fO(!/) +fib) 7 +fZ(y) q2 +f3(?/) v37 

h(% Y) = how + hl(Y) 71 + h,(YW + h3(Y) r3. 
(69) 

(70) and 

The boundary conditions are 

f =  0 at 7 = 0, and ah/aq = 0 at 7 = 0. (71) , (72)  

I n  order to satisfy these, it follows from (64)-(66) that 

f o ( Y )  = fz(Y) = hl(Y) = h3(Y) = 0. (73) 

Equations (69) and (70) then reduce to 

f ( T ,  Y) =f,(Y) 71 +f3(Y)v3 and h(T, Y) = +h&) 712- (69a) ,  ( 7 0 ~ )  

Substituting these expressions into (62)-(64) and (66) ,  andequatinglike powers of 
7 ,  we obtain the following set of ordinary differential equations for the determina- 
tion of the five unknown functionsf,(y),f,(y), ho(y), h,(y) and +j(y): 

(74) 

(75) 

(76) 

h y - + f , ( j +  hi 1)-hms = 0, 
h0 

h y  h; - - - (1  -fl - Am) Zh, + ( j  + 3)f3 ho = 0, ( 
9' s" 
9 h0 

- X + h y  - - hyy - + yhms = A (y) 2 ( j  + 1)  hgfa-S 7t.2, 

ho+hzq2 = H ( y ) v ,  

f l l  +f3+j3 = P(Y)+j- 

Primes denote differentiation with respect to y. 

(77) 

(78) 

10. Solution 
The set of nonlinear equations (74)-(78) specifies, in effect, an initial-value 

problem. One must obtain first a solution for y = 0, to provide initial conditions for 
y > 0. The former is, of course, self-similar, the flow field then being a function of 
only one independent variable, 7. Under such circumstances, (74)-( 78) are reduced 
to the algebraic relations 

fl(0) = 'ms, (79) 

( 80) - (1  -f,(O) - horn) %,(o) + (j + 3)f3(0) ho(0) = 0, 
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Proper account has been taken of the fact that, for y = 0, h = A, = j + 1. 
Equations (79)-( 83) are solved directly, yielding 

(84) 

(85) 

2(0) = q(O)/ym. (86) 

Although (84)-(86) indeed furnish the initial conditions for the case y > 0, the 
system of governing equations is singular a t  y = 0, so that one cannot start 
numerical integration at  this point. To overcome this, following the established 
procedure, an expansion for small y is introduced. In particular, we postulate 
that, in the vicinity of y = 0, we can write 

fjnner = (fl(0) 1?(0) +f3(0)71"3(0))/Ym = f,*(O) V(0) +fa)) f3 (0 )>  

hinner = (ho(O) +hz(0)1?2(0))/~ms = G ( o )  + h ; ( O ) q 2 ( O ) ,  

fl(Y) = fl(0) + ly, 
while A(Y) = Pl+PZY. 
Here, according to definition (67), 

yafl 
Pl = &tl (i+ 1 q - 1  and p2 = -pl(j+l)-l&. 

-l-&io A, U1 with u -  +l+t41--- 
- l-ms-mA, 2 (1  -ms-mh,)' 

- (A#,) ms -mA, A0 1 
v2 = + 211 -- 211 1 -ms-mh, 2 1-ms-mh,' 

Finally, the matching point, near y = 0,  is found from (78) to be at 

7?j(Y) = 1?(0) (1 +dY), 
where d = u3n +- v3, 
with u3 = i( -u2-- 

2 1-yms y ,  ' 

1 I v3 = 2 1 v2+ -----y- lms hl 91 Lo 90 A0 
(l-yms)-l . 



78 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

A. K .  Oppenheim et al .  

1.0 

0.8 

0.6 

5 
0.4 

0.2 

- 0  
1 I I I I 1 
0 0.2 0.4 

Y 
FIGURE 1. Decay parameter A,  non-dimensional pressure a t  t,lie centre g,  and the front 
co-ordinate c, as functions of the front intensity y = for the outer inviscid region in 
the point-symmetrical case ( j  = 2).  

Equations (87), (91), (92), (96) and (100) are now substituted into ( T i ) ,  to give 
(see (87)  and (91)) 

The integrat'ion can be started on the basis of t<his result. 

11. Results 
The numerical results presented here serve only as illustrations of the type of 

data obtainable by the analytical technique we developed. They all refer to the 
classical case of point explosions with non-zero counter-pressure in a perfect gas 
with y = 1-4. The properties of the inviscid, outer regime of the blast wave are 
based on the data of Korobeinikov & Chushkin (1966), and displayed here in 
figures 1-3 for j = 2, 1 and 0, respectively. On this basis, the coefficients of the 
algebraic relations specifying the functions h(y), g(y) and <(y), (48)-(50), are given 
in tables 2-4. They provide accurate approximations to the numerical results of 
Korobeinikov & Chushkin (1966) in the range 0 < y < 0.5. 

The reference radius of the front co-ordinate tis directly related to the explosion 
energy E, by 
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FIGURE 2. h ( y ) ,  g(y) and E(y) for the outer inviscid region 
in the line-symmetrical case (j = 1). 
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FIGURE 3. h ( y ) ,  g(y) and l(y) for the outer inviscid region 

in the plane-symmetrical case (j = 0). 
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1.0 

lo-' 

I /  ,* 

1 0 - 2  

10- 3 

j A, A1 A 2  A3 4 
0 1.0 - 2.15 2.86 - 3.12 1.45 
1 2.0 - 4.30 5.72 - 6.24 2.90 
2 3.0 - 6.44 a.58 - 9.35 4.35 

TABLE 2. Coefficients in expansion of h ( y )  (equation (48)) 

j YO 91 Q2 93 B4 

0 0.389 - 0.935 2.46 - 1.54 0.362 
1 0-333 - 0.372 0.477 0.509 - 0.146 
2 0.323 - 0.372 0-938 -0.134 1.58 

TABLE 3. Coefficients in expansion of g(y) (equation (49)) 

- 

- 

- 

- 

j El E 2  5 3  E 4  5 5  5 6  E, 58 59 

O 0.317 6.44 -9.l l ' t  1.933 -1-fX4 7.37' - 1.795 2.265 - 1.165 
1 0.179 6.44 3.32 -8.18' 6.622 -2.273 3.518 -2.003 (I 
2 0.114 6.44 ~ 5 . 4 1 ~  - 1.183 1*104 -5.244 1.365 -1.815 9.654 

t Shorthand notation for powers of ten is used, so e.g. - 9.1 1' - 9.1 1 x 101. 

TABLE 4. Coefficients in expansion of [(y) (equation (50)) 

I I I I I I I 
0 0.2 0.4 0.6 

Y 

FIGURE 4. Integral curves of density coefficients h,*(y) and h,*(y) 
for RP = 104,j = 2 and various a. 
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FIGURE 5. Integral curves of velocity coefficientsfc.(y) and j$(y) 
for RP = lo4, j = 2 and various a. 
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Location of matching point Z(y) for R P  = l O * , j  = 2 and various a. 
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b, is a number close to unity (see e.g. Sedov 1959, p. 231). From the definition (16) 
of e, and the Reynolds number (9)) it follows that E GC r;l cc E;(j+l)-', so that the 
extent of the inner region is of order ~ ( e )  = e(f~ cc Egwl(jf1). According to table 1,  
we have & 6 w < 1/3.25 for the various values ofj, Gand a listed, so the exponent 
- w / ( j  + 1) of E, lies in the range - 1/3.25 6 - w / ( j  + 1) 6 -&. The implication 
of E having this quite small negative exponent is that the size of the inner region 
is relatively insensitive to  the energy of the explosion. 

I n  order to  explore the salient features of the results, they are first worked out 
for the case of the Reynolds-Prandtl number product RP = lo4, and three 
typical values of the temperature exponent, a, for the viscosity coefficient, while 
radia,tion effects have been neglected (6 = 0) .  These solutions serve also as a 
demonst,rat,ion that thermal conduction as the sole heat-transfer mechanism is 
generally insufficient to  lower the temperatures near the centre to a level com- 
patible with the assumption that radiation is negligible. The results are specified 
in terms of integral curves for h,*(y), hl(y) ,  f:(y), fz(y) and Z(y), displayed in 
figure 4-6 for the case o f j  = 2. We note that, for this value of j ,  one has a saddle- 
point singularity a t  y = 0. Its  axes are provided by the ordinate y = 0 and the 
integral curve for a = a, having the value of 8 .  Although the results fo r j  = 1 and 
j = 0 are not plotted, they show the same behaviour, with the axes passing 
through the saddle point given by y = 0 and the integral curves for a = a, with 
the values 0 and - 4, respectively. 

Temperature profiles for this non-radiative case are shown in figure 7 t for j = 2 
and the same values of a as in figures 4-6. (The temperature is non-dimensionalized 
by T,,,, the value behind the shock wave.) We see from the figure that for a = Q and 
a = 0 the temperatures in the inner region vary from about 20 to over 500 times 
the temperature at the shock. Since for the lowest Mach number shown, M = 4 2 ,  
corresponding to y = 0.5, T, = 0 (360 OK), temperatures in the inner region for 
these cases will lie between 7200 and 180 000 OK, with the average temperatures 
so high that the effects of radiation are predominant. For the case ofa = 1, on the 
other hand, we see that the temperatures are sufficiently low (of the order of 
3600 OK), so that conduction will be the dominant heat-transfer mechanism. The 
temperature profiles for the j = 0 and j = 1 cases are shown in figures 8 and 9. 
Neglect of radiation is possible only for a = 1 when j = 1 and for a = 1 or 0 when 
j = 0:  for eachj, it becomes less valid as a decreases, reflecting the fact that the 
smaller a is, the less effective is thermal conduction in reducing the high tempera- 
tures near the centre. I n  figures 10-12 are shown the location of the matching 
point, a,nd non-dimensional densitmy and velocity profiles for some of the cases 
just described, for which heat conduction alone is a valid model. 

-f In figure 7 and all later figures that exhibit x profiles, the curves do not extend up to 
z = 1, which is the location of the shock a t  that kime, because the approximate expressions 
(48)-(50), introduced to represent analytically the outer inviscid regions, are most accurate 
in the vicinity of matching of the inner and outer regions, and are not good approximations 
further out. The partsof the curves thusomitted can be obtained from the inviscid solutions 
of Korobeinikov & Chushkin ( 1966). In addition, since, toemphasize the distinctions between 
the inner and outer regions, we have not developed composite expansions, this and the 
following figures show profiles that are not smooth at  the points where the inner and outer 
solutions join. 
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FIGURE 7. Temperature profiles for RP = 104, j = 2 and various values of the temperature 
exponent a and front velocity parameter y. 

FIGURE 8. Temperature profiles for RP = 104, j = 1 and various values of the temperature 
exponent a and front velocity parameter y. 



A .  K .  Oppenheim el! al. 

1.0- 

0.8 

0.6 

0.4 

0.2 

0 -  

-0-2 

-0.4 

d 

- 

- 

- 

- 

- 

- 

j = 2  

1 

0 

O L  
1 1 1 1 1  1 1  

0 0.2 0.4 0.6 

Y 

FIGURE 10. Location of matching point 
?(y) for RP = loa$ a = 1 and j  = 0 , 1 , 2 .  

t 
4 
4 
- 10-1 

loo I 
I- 

t 
10-2 L 

I I I I  t " 1 1  I f  
0 0.2 0.4 0.6 0.8 1.0 

X 

F'IUURE 11. Density profiles for RP = lo4, 
a = 1, y = 0.5 andj = 0,1,2. 
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FIGURE 12. Velocity profiles for RP = lo4, a = 1, y = 0.5 andj = 0,1 ,2 .  
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FIGURE 13. Integral curves of density co- 
efficients h;(y) and h:(y) for R P  = lo9, 
j = 2, a = 1.5 andS = 0 and -2. 

FIGURE 14. Integral curves of velocity co- 
efficients fT(y) and f$(y), and location of 
matching point Z(y) for R P  = 100, j = 2, 
a = 1.5 and S = 0 and -2. 

To investigate the effects of radiation, integral curves have also been obtained 
for the physically most interesting case, the point explosion ( j  = 2)) with 
RP = lo9 (corresponding to  an explosion energy E,  = 1023ergs, equivalent to  a 
yield of about 100 times that of the first nuclear bomb test a t  Alamogordo). The 
proper values of the parameters a and 6 appearing in (8) can be obtained from the 
data for the properties of high-temperature air for the pertinent temperature- 
density range of interest. From the data of Armstrong et al. (1961) (see also 
Scala 85 Sampson 1964), curve-fitting their values for the Rosseland mean free 
path, we find that appropriate values for the cases we calculate are a = 1.5 and 
6 = - 2. Integral curves of the density and velocity coefficients and location of 
the matching point between inner and outer expansions are shown in figures 13 
and 14. In addition to the radiation case of 6 = - 2, for comparison purposes we 
also show in these figures, and the ones that follow, corresponding curves for the 
non-radiation case 6 = 0. The density, velocity and temperature profiles calcu- 
lated from these coefficients are shown in figures 15-17. The inclusion of radiation 
is seen to have the effect of flattening the density and temperature profiles. (It is 
worthy of note that, because the pressure is nearly constant in the inner region, 
a decrease in t,he value of& is equivalent to an increase in a. Thus the flattening of 
profiles, just described, which occurs as we go from the non-radiative S = 0 case 
to the radiative 6 = - 2 case, occurs in each of the purely non-radiative cases as 
a increases from 0 or - 8 to  the value 1 .) Furthermore, temperatures in the inner 
region are decreased, and densities correspondingly increased, by about one 
order of magnitude, with radiation taken into account. 
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FIGURE 15. Density profiles for RP = lo9, 
j = 2, a = 1.5, S = 0 and - 2, and various 
values of front velocity parameter y. 
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FIGURE 16. Velocity profiles for RP = lo9, 
j = 2 ,  a = 1.5, 6 = 0 and - 2 ,  and various 
values of the front velocity parameter y. 
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FIGURE 17. Temperature profiles for RP = 1 0 g , j  = 2, a = 1.5, b' = 0 and - 2, and 
various values of the front velocity parameter y. 
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The density and temperature profiles for this high-energy explosion (RP = 109) 
and the extent of the inner region agree qualitatively with the comprehensive 
fully-numerical calculations of Brode (1  968) for nuclear explosions, especially a t  
times when the present solution might be expected to be valid. That is, Brode’s 
calculations show, as do the results here, a steep increase in temperature as one 
moves inwards from the shock, until a point about 40-60 yo of the distance to the 
shock is reached. After this the temperature remains relatively uniform and high, 
up to the centre. That there is only a mild temperature gradient in the inner region 
is a consequence of the highly nonlinear dependence of the thermal conductivity 
x on temperature when the Rosseland approximation for radiation is made. For 
the effect of this nonlinear dependence on the energy equation is such that the 
heat in the central region cannot instantaneously penetrate over large distances, 
but propagates with a finite velocity, in such a way that a sharply defined 
boundary exists between the hot region and the colder region not yet reached by 
the thermal disturbance (Zel’dovich & Raizer 1967, ch. 10). Thus the heat pro- 
pagates in the form of a wave, which is actually referred to as a thermal wave or, 
alternatively, radiation front. Immediately upon the initiation of a blast of 
extremely high energy, the speed of propagation of the thermal wave is much 
greater than the speed of sound. (In fact, for the spherical case, the speed of the 
wave drf/dt N Tn+*, where n is the exponent in the expression x - Tn. Since the 
pressure is constant in the innerregion, x - T3+for our choice a = 1.5, S = - 2, and 
consequentsly drf/dt N T3.83 ,  whereas the speed of sound in a high-temperature gas 
is roughly proportional to Ti.) Thus, initially there is little motion of the fluid, 
and the heat flows through a stationary medium as a thermal wave. As the 
temperature falls, this wave decelerates while the fluid is set in motion. This leads 
to  the formation of a shock wave, which eventually overtakes the thermal wave. 
It is a t  this later stage, a t  a time of the order perhaps of a millisecond after 
initiation, that the blast begins to  resemble the classical strong-explcsion solution. 
Our results are valid only for times subsequent to this initial period of transition 
from radiative to shock growth. 
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